Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dent Mater ; 40(3): 508-519, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199893

RESUMEN

OBJECTIVES: Dental implant placement frequently requires preceding bone augmentation, for example, with hydroxyapatite (HA) or ß-tricalcium phosphate (ß-TCP) granules. However, HA is degraded very slowly in vivo and for ß-TCP inconsistent degradation profiles from too rapid to rather slow are reported. To shorten the healing time before implant placement, rapidly resorbing synthetic materials are of great interest. In this study, we investigated the potential of magnesium phosphates in granular form as bone replacement materials. METHODS: Spherical granules of four different materials were prepared via an emulsion process and investigated in trabecular bone defects in sheep: struvite (MgNH4PO4·6H2O), K-struvite (MgKPO4·6H2O), farringtonite (Mg3(PO4)2) and ß-TCP. RESULTS: All materials except K-struvite exhibited promising support of bone regeneration, biomechanical properties and degradation. Struvite and ß-TCP granules degraded at a similar rate, with a relative granules area of 29% and 30% of the defect area 4 months after implantation, respectively, whereas 18% was found for farringtonite. Only the K-struvite granules degraded too rapidly, with a relative granules area of 2% remaining, resulting in initial fibrous tissue formation and intermediate impairment of biomechanical properties. SIGNIFICANCE: We demonstrated that the magnesium phosphates struvite and farringtonite have a comparable or even improved degradation behavior in vivo compared to ß-TCP. This emphasizes that magnesium phosphates may be a promising alternative to established calcium phosphate bone substitute materials.


Asunto(s)
Sustitutos de Huesos , Compuestos de Magnesio , Magnesio , Fosfatos , Ovinos , Animales , Estruvita , Magnesio/farmacología , Ensayo de Materiales , Fosfatos de Calcio/farmacología , Sustitutos de Huesos/farmacología , Durapatita , Regeneración Ósea
2.
J Biomater Appl ; 38(3): 438-454, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525613

RESUMEN

Magnesium phosphate-based bone cements, particularly struvite (MgNH4PO4∙6H2O)-forming cements, have attracted increased scientific interest in recent years because they exhibit similar biocompatibility to hydroxyapatite while degrading much more rapidly in vivo. However, other magnesium-based minerals which might be promising are, to date, little studied. Therefore, in this study, we investigated three magnesium-based bone cements: a magnesium oxychloride cement (Mg3(OH)5Cl∙4H2O), an amorphous magnesium phosphate cement based on Mg3(PO4)2, MgO, and NaH2PO4, and a newberyite cement (MgHPO4·3H2O). Because it is not sufficiently clear from the literature to what extent these cements are suitable for clinical use, all of them were characterized and optimized regarding setting time, setting temperature, compressive strength and passive degradation in phosphate-buffered saline. Because the in vitro properties of the newberyite cement were most promising, it was orthotopically implanted into a partially weight-bearing tibial bone defect in sheep. The cement exhibited excellent biocompatibility and degraded more rapidly compared to a hydroxyapatite reference cement; after 4 months, 18% of the cement was degraded. We conclude that the newberyite cement was the most promising candidate of the investigated cements and has clear advantages over calcium phosphate cements, especially in terms of setting time and degradation behavior.


Asunto(s)
Cementos para Huesos , Magnesio , Animales , Ovinos , Ensayo de Materiales , Fosfatos de Calcio , Fuerza Compresiva , Durapatita
3.
Biomed Mater ; 18(1)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36541469

RESUMEN

Regenerative bone implants should be completely replaced by new bone within a period of time corresponding to the growth rate of native bone. To meet this requirement, suitable biomaterials must be biodegradable and promote osteogenesis. The combination of slowly degrading but osteoconductive calcium phosphates (CPs) with rapidly degrading and mechanically more resilient magnesium phosphates represents a promising material class for this purpose. In order to create the best possible conditions for optimal implant integration, microporous calcium magnesium phosphate (CMP) cements were processed using 3D powder printing. This technique enables the production of a defect-adapted implant with an optimal fit and a high degree of open porosity to promote bone ingrowth. Four different compositions of 3D printed CMP ceramics were investigated with regard to essential properties of bone implants, including chemical composition, porosity, microstructure, mechanical strength, and cytocompatibility. The ceramics consisted of farringtonite (Mg3(PO4)2) and stanfieldite (Ca4Mg5(PO4)6), with either struvite (NH4MgPO4·6H2O) or newberyite (MgHPO4·3H2O) and brushite (CaHPO4·2H2O) as additional phases. The CMP materials showed open porosities between 13 and 28% and compressive strengths between 11 and 17 MPa, which was significantly higher, as compared with clinically established CP. The cytocompatibility was evaluated with the human fetal osteoblast cell line hFOB 1.19 and was proven to be equal or to even exceed that of tricalcium phosphate. Furthermore, a release of 4-8 mg magnesium and phosphate ions per mg scaffold material could be determined for CMPs over a period of 21 d. In the case of struvite containing CMPs the chemical dissolution of the cement matrix was combined with a physical degradation, which resulted in a mass loss of up to 3.1 wt%. In addition to its beneficial physical and biological properties, the proven continuous chemical degradation and bioactivity in the form of CP precipitation indicate an enhanced bone regeneration potential of CMPs.


Asunto(s)
Sustitutos de Huesos , Humanos , Sustitutos de Huesos/química , Estruvita , Magnesio , Fosfatos/química , Fosfatos de Calcio/química , Cementos para Huesos/química , Ensayo de Materiales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA